Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(S)-2,3,5,10,11,11a-Hexahydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-3,11dione

Mao-Sheng Cheng,* Chao Ma, Jing-Hong Liu, Yu Sha and Qing-He Wang

School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Mail Box 40, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China
Correspondence e-mail: mscheng@syphu.edu.cn

Received 22 October 2007; accepted 31 October 2007

Key indicators: single-crystal X-ray study; $T=187 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.036 ; w R$ factor $=0.093$; data-to-parameter ratio $=7.5$.

The title chiral compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, was prepared by an intramolecular cyclization reaction of (S)-methyl 1-(2-nitro-benzyl)-5-oxopyrrolidine-2-carboxylate in the presence of $\mathrm{EtOH} / \mathrm{Fe}$. In the molecule, the seven-membered ring adopts a twist-boat conformation, while the five-membered ring shows a typical envelope conformation. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Related literature

For general background, see: Kamal et al. (2002); Mérour et al. (1994); Mishra et al. (2007); Thurston \& Bose (1994). For a related structure, see: Arora (1979).

$\beta=112.810(2)^{\circ}$
$V=1047.0(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: none
2870 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.093$
$S=1.17$
1089 reflections
145 parameters
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=187$ (2) K
$0.36 \times 0.17 \times 0.13 \mathrm{~mm}$

1089 independent reflections 1046 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

1 restraint
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}_{2}{ }^{\mathrm{i}}$	0.88	2.06	$2.871(2)$	153

Symmetry code: (i) $-x+1, y,-z+1$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2346).

References

Arora, S. K. (1979). Acta Cryst. B35, 2945-2948.
Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Kamal, A., Rao, M. V., Laxman, N., Ramesh, G. \& Reddy, G. S. K. (2002). Curr. Med. Chem. Anti Ca. Agent. 2, 215-254.
Mérour, J. Y., Cossais, F., Piroëlle, S. \& Mazeas, D. (1994). J. Heterocycl. Chem. 31, 87-92.
Mishra, J. K., Garg, P., Dohare, P., Kumar, A., Siddiqi, M. I., Ray, M. \& Panda, G. (2007). Bioorg. Med. Chem. Lett. 17, 1326-1331.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1990). SHELXTL-Plus. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
Thurston, D. E. \& Bose, D. S. (1994). Chem. Rev. 94, 433-465.

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	$a=16.280(2) \AA$
$M_{r}=216.24$	$b=6.2848(9) \AA$
Monoclinic, $C 2$	$c=11.1016(15) \AA$

$M_{r}=216.24$
Monoclinic, C2

supplementary materials

Acta Cryst. (2007). E63, o4605 [doi:10.1107/S1600536807054979]

(S)-2,3,5,10,11,11a-Hexahydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-3,11-dione

M.-S. Cheng, C. Ma, J.-H. Liu, Y. Sha and Q.-H. Wang

Comment

Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are naturally occurring compounds isolated from various streptomyces (Kamal et al., 2002; Thurston \& Bose, 1994). Such compounds have potential as regulators of gene expression with possible application as therapeutic agents in the treatment of certain genetic disorders including some cancers (Mishra et al., 2007; Mérour et al., 1994). As PBDs compounds are of great pharmaceutical importance, we determined the title chiral compound's crystal structure.

The molecular is shown in Fig. 1. The bond lengths and angles are within normal ranges. PBD ring involves in a twisted conformation (Arora, 1979). The seven-membered ring C6-C11-C12-N1-C4-C5-N2 (substituted diazepine) is far from planar, and its shape approximates to a twist boat. In this description applied to the title compound (Fig. 1), atoms C5, $\mathrm{C} 12, \mathrm{~N} 1$ and N 2 form the bottom of the boat (deviation from the mean $\mathrm{C} 5 / \mathrm{N} 1 / \mathrm{C} 12 / \mathrm{N} 2$ plane $=0.090(2) \AA), \mathrm{C} 4$ the prow, and C6 and C11 the stern [deviations from the $\mathrm{C} 5 / \mathrm{C} 12 / \mathrm{N} 1 / \mathrm{N} 2$ mean plane $=0.655,0.951,0.932 \AA$, respectively]. The bond length of the carbonyl groups $\mathrm{C} 1=\mathrm{O} 1$ and $\mathrm{C} 5=\mathrm{O} 2$ of 1.213 (3) and 1.224 (3) \AA, respectively, are somewhat longer than typical carbonyl bonds. This may be due to the fact that atoms O 1 and O 2 participate in intermolecular van der Waals forces. The five-membered ring $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ (substituted pyrrole) is non-planar and adopts nearly envelope conformation (deviation from the mean $\mathrm{C} 4 / \mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2$ plane $=0.013(5) \AA$). The C 3 atom is located above the plane [deviations from the $\mathrm{C} 4 / \mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2$ mean plane $=0.378 \AA$]. Atom C 4 of the title molecule is chiral: S configuration was assigned to this atom based on the known chirality of the equivalent atom in the starting material.

The molecules are linked by an intermolecular hydrogen bond between $\mathrm{N} 2-\mathrm{H} 2$ and $\mathrm{O} 2(-X+1, y, z)$ (Table 1, Fig. 2).

Experimental

(S)-1-(2-Nitrobenzyl)-5-oxopyrrolidine-2-carboxylic acid methyl ester ($5.56 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in ethanol (100 ml). Fe ($2.51 \mathrm{~g}, 45 \mathrm{mmol}$) was added and the solution was heated to reflux for 30 min . The mixture was filtered and the filtrate was concentrated under vacuum. The pure product was obtained through silica gel chromatography (eluant: petroleum ether/ethyl acetate, 1:1). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a dilute solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}=$ $0.88 \AA, \mathrm{C}-\mathrm{H}=0.95,0.99$ and $1.00 \AA$ for phenyl, methylene and tertiary H atoms, respectively, $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$. Based on known chirality of the equivalent atom in the starting material, the S chirality at C 4 was assigned. Friedels pairs were merged.

supplementary materials

Figures

Fig. 1. The structure of the title compound(I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The molecular packing of (I), the molecular packing viewed along the b axis, H atoms not involved in hydrogen bonding have been omitted.

(S)-2,3,5,10,11,11a-Hexahydro-1 H-pyrrolo[2,1-c][1,4]benzodiazepine-3,11-dione

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=216.24$
Monoclinic, $C 2$
$a=16.280$ (2) \AA
$b=6.2848$ (9) \AA
$c=11.1016(15) \AA$
$\beta=112.810(2)^{\circ}$
$V=1047.0(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=187(2) \mathrm{K}$
φ and ω scans
Absorption correction: none
2870 measured reflections
1089 independent reflections
$F_{000}=456$
$D_{\mathrm{x}}=1.372 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1769 reflections
$\theta=2.7-25.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=187$ (2) K
Block, colorless
$0.36 \times 0.17 \times 0.13 \mathrm{~mm}$

1046 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25.6^{\circ}$
$\theta_{\text {min }}=2.0^{\circ}$
$h=-19 \rightarrow 16$
$k=-7 \rightarrow 7$
$l=-8 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.093$
$S=1.17$
1089 reflections
145 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0528 P)^{2}+0.3158 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17$ e \AA^{-3}
Extinction correction: none

1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iss }}{ }^{*} / U_{\text {eq }}$
C1	$0.65320(15)$	$0.9090(4)$	$0.9102(2)$	$0.0281(5)$
C2	$0.61760(16)$	$0.7804(4)$	$0.9947(2)$	$0.0313(6)$
H2A	0.5689	0.8577	1.0083	0.038^{*}
H2B	0.6654	0.7504	1.0809	0.038^{*}
C3	$0.58320(16)$	$0.5751(4)$	$0.9194(2)$	$0.0308(6)$
H3A	0.5181	0.5825	0.8688	0.037^{*}
H3B	0.5964	0.4517	0.9795	0.037^{*}
C4	$0.63361(15)$	$0.5576(4)$	$0.8278(2)$	$0.0249(5)$
H4	0.6886	0.4700	0.8700	0.030^{*}
C5	$0.57841(15)$	$0.4697(4)$	$0.6922(2)$	$0.0251(5)$
C6	$0.71544(15)$	$0.4757(4)$	$0.6450(2)$	$0.0251(5)$
C7	$0.76369(16)$	$0.3207(4)$	$0.6119(2)$	$0.0294(5)$
H7	0.7352	0.1945	0.5686	0.035^{*}
C8	$0.85484(18)$	$0.3519(5)$	$0.6431(3)$	$0.0342(6)$
H8	0.8885	0.2463	0.6212	0.041^{*}
C9	$0.89569(16)$	$0.5354(5)$	$0.7053(3)$	$0.0366(6)$
H9	0.9577	0.5556	0.7273	0.044^{*}
C10	$0.84635(16)$	$0.6912(5)$	$0.7360(2)$	$0.0330(6)$
H10	0.8749	0.8179	0.7783	0.040^{*}
C11	$0.75563(15)$	$0.6642(4)$	$0.7055(2)$	$0.0270(5)$
C12	$0.70051(17)$	$0.8408(4)$	$0.7277(2)$	$0.0301(5)$
H12A	0.7392	0.9658	0.7643	0.036^{*}

H12B	0.6540	0.8834	0.6428	0.036^{*}
N1	$0.65789(13)$	$0.7786(3)$	$0.81665(19)$	$0.0268(5)$
N2	$0.62252(12)$	$0.4396(4)$	$0.61258(18)$	$0.0274(5)$
H2	0.5911	0.3934	0.5331	0.033^{*}
O1	$0.67442(13)$	$1.0953(3)$	$0.9227(2)$	$0.0395(5)$
O2	$0.49882(10)$	$0.4306(3)$	$0.65628(16)$	$0.0328(4)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0213(10)$	$0.0298(14)$	$0.0313(12)$	$0.0030(10)$	$0.0081(9)$	$-0.0003(10)$
C2	$0.0262(11)$	$0.0376(14)$	$0.0336(12)$	$-0.0003(11)$	$0.0155(10)$	$-0.0049(12)$
C3	$0.0291(12)$	$0.0369(14)$	$0.0314(12)$	$-0.0040(11)$	$0.0170(10)$	$-0.0015(11)$
C4	$0.0241(11)$	$0.0252(12)$	$0.0261(11)$	$-0.0006(10)$	$0.0105(9)$	$0.0013(10)$
C5	$0.0244(11)$	$0.0233(11)$	$0.0284(11)$	$-0.0005(9)$	$0.0111(9)$	$0.0035(10)$
C6	$0.0250(11)$	$0.0316(13)$	$0.0207(10)$	$-0.0004(10)$	$0.0110(9)$	$0.0025(10)$
C7	$0.0319(12)$	$0.0311(14)$	$0.0289(11)$	$-0.0022(11)$	$0.0157(9)$	$0.0000(10)$
C8	$0.0323(12)$	$0.0407(15)$	$0.0353(13)$	$0.0066(11)$	$0.0193(10)$	$0.0057(11)$
C9	$0.0223(11)$	$0.0529(18)$	$0.0368(13)$	$-0.0018(12)$	$0.0140(10)$	$0.0063(13)$
C10	$0.0291(12)$	$0.0385(14)$	$0.0317(13)$	$-0.0098(11)$	$0.0121(10)$	$0.0011(12)$
C11	$0.0285(12)$	$0.0300(14)$	$0.0263(11)$	$-0.0016(11)$	$0.0147(9)$	$0.0035(10)$
C12	$0.0363(12)$	$0.0253(12)$	$0.0328(12)$	$-0.0040(11)$	$0.0178(10)$	$0.0013(10)$
N1	$0.0283(10)$	$0.0248(10)$	$0.0291(10)$	$-0.0020(8)$	$0.0131(8)$	$0.0006(9)$
N2	$0.0223(9)$	$0.0354(11)$	$0.0235(9)$	$-0.0055(9)$	$0.0078(7)$	$-0.0047(9)$
O1	$0.0433(11)$	$0.0269(10)$	$0.0508(11)$	$-0.0014(8)$	$0.0210(9)$	$-0.0054(9)$
O2	$0.0199(8)$	$0.0461(11)$	$0.0329(8)$	$-0.0053(8)$	$0.0107(6)$	$-0.0001(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	$1.213(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.348(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.514(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.521(4)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900
$\mathrm{C} 3-\mathrm{C} 4$	$1.538(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9900
$\mathrm{C} 4-\mathrm{N} 1$	$1.462(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.527(3)$
$\mathrm{C} 4-\mathrm{H} 4$	1.0000
$\mathrm{C} 5-\mathrm{O} 2$	$1.224(3)$
$\mathrm{C} 5-\mathrm{N} 2$	$1.351(3)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.387(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$125.2(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$127.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$107.6(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$105.10(19)$

$\mathrm{C} 6-\mathrm{C} 11$	$1.393(3)$
$\mathrm{C} 6-\mathrm{N} 2$	$1.431(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.401(4)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{C} 8-\mathrm{C} 9$	$1.376(4)$
$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{C} 9-\mathrm{C} 10$	$1.390(4)$
$\mathrm{C} 9-\mathrm{H} 9$	0.9500
$\mathrm{C} 10-\mathrm{C} 11$	$1.392(3)$
$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 11-\mathrm{C} 12$	$1.507(4)$
$\mathrm{C} 12-\mathrm{N} 1$	$1.463(3)$
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9900
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9900
$\mathrm{~N} 2-\mathrm{H} 2$	0.8800
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$119.4(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	120.3
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	120.3
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$120.0(2)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.7
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$104.26(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.9
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.9
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 5$	$109.59(19)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$102.69(19)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$114.64(18)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4$	109.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	109.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	109.9
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{N} 2$	$121.6(2)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$122.5(2)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$115.91(18)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 11$	$121.1(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 2$	$118.3(2)$
$\mathrm{C} 11-\mathrm{C} 6-\mathrm{N} 2$	$120.6(2)$

$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	120.0
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	120.0
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$120.1(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	120.0
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	120.0
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$120.9(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	119.5
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	119.5
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 6$	$118.5(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$120.9(2)$
$\mathrm{C} 6-\mathrm{C} 11-\mathrm{C} 12$	$120.5(2)$
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11$	$112.4(2)$
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.1
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.1
$\mathrm{~N} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.1
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.1
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	107.8
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$	$122.7(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$114.5(2)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 4$	$121.72(19)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6$	$126.30(18)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2$	116.9
C6-N2-H2	116.9

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.88	2.06	$2.871(2)$	153

Symmetry codes: (i) $-x+1, y,-z+1$.
supplementary materials

Fig. 1

Fig. 2

